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Abstract

We explain why underpricing in IPOs can be large in magnitude and clustered, using a
signalling model where ¯rms have private information about their qualities (high or low). A
novel feature is that a ¯rm, if perceived by the market as high quality, bene¯ts from the
industry's publicity which is an increasing function of the amount of IPO underpricing by all
high-quality ¯rms in the industry. Two separating equilibria exist, in one no ¯rm underprices
IPO and the industry has no publicity; in the other every high-quality ¯rm underprices IPO
and the industry has great publicity. The two equilibria coexist when the industry's publicity
has a strong positive e®ect on each high-quality ¯rm's expected earnings. A strong industry
publicity induces underpricing because it increases both the bene¯t for a high-quality ¯rm
to signal its quality and the temptation for a low-quality ¯rm to mimic; to bene¯t from the
publicity, a high-quality ¯rm underprices its IPO to separate itself from a low-quality ¯rm.
This result is opposite to a typical externality story where the free-rider problem would reduce
or eliminate IPO underpricing altogether.
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1. Introduction

Initial public o®erings (IPOs) by Internet ¯rms experienced phenomenal price gains in the ¯rst

half of 1999, implying huge underpricing in those IPO o®er prices. For example, the share price of

MarketWatch.com rose to $97:50 on the ¯rst trading day from an o®er price of $17. In contrast,

concurrent IPOs by traditional ¯rms did not exhibit a general pattern of underpricing. In fact,

in the ¯rst half of 1999 the IPO market was so concentrated on Internet ¯rms and many of those

IPOs performed so well that there was an increase in cancellations and withdraws from the IPO

market by non-Internet ¯rms.1 Why do Internet ¯rms o®er their IPOs at prices so much below

market prices? And, more importantly, why does underpricing cluster in time and industry? In

this paper we construct a model to explain.

We argue that both the large magnitude and the clustering of IPO underpricing can be due to

great uncertainty in the demand for Internet products or services. Since most Internet ¯rms make

products/services that have no resemblance to but nevertheless compete against traditional ones,

there is very little guidance to predicting the demand for such products. Market expectations on

those ¯rms' earnings are sensitive to positive \publicity" that the Internet industry as a whole

generates. A great publicity for the industry is likely to attract customers and improve market

expectations on earnings for each good ¯rm in the industry. We show that, through the industry's

publicity, IPO underpricing can be clustered and large in magnitude.

More precisely, we model each ¯rm's o®er price and the fraction of shares issued to the public

in IPO as devices to signal its quality. As in a typical signalling model (see later references), each

¯rm's intrinsic quality (high or low) is known only to the ¯rm itself and market expectations on a

¯rm's earnings increase with the perceived quality of the ¯rm. In contrast to a typical signalling

model, a ¯rm's expected earnings also depend on the industry's publicity, which is modeled as

an increasing function of the amount of IPO underpricing by high-quality ¯rms in the industry.

A perceived high-quality ¯rm's expected earnings increase with the industry's publicity by more

than do a perceived low-quality ¯rm's.

As in a typical signalling model, a low-quality ¯rm tries to masquerade as high quality and

so a high-quality ¯rm can separate itself out only by taking actions that are too costly for a

low-quality ¯rm to take. This separation is possible here because the marginal cost of alternative

¯nancing methods such as borrowing is lower for a high-quality ¯rm than for a low-quality ¯rm.

By restricting the amount of funds raised through IPO, a high-quality ¯rm indicates that its

1As the chief executive of a large dry pet food company complained, \If you look at the IPO market, there's
large-capitalization activity and dot.com activity, but little else. I feel sorry for small-cap companies that are
nondot.com, and which need to complete their deals." (Prial, 1999)
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quality is high to generate enough revenue to cover the resulted borrowing cost. Such signalling

does not necessarily entail IPO underpricing; it does so only when the expected di®erence in

expected earnings between a high-quality ¯rm and a low-quality ¯rm is su±ciently large. The

industry's publicity induces underpricing by increasing such a di®erence.

There are two separating equilibria in this framework.2 In one equilibrium there is large

underpricing of IPOs by all high-quality ¯rms, thus clustering, but in the other there is no

underpricing. The no-underpricing equilibrium is the only equilibrium when the in°uence of the

industry's publicity on each ¯rm's expected earnings is weak. But when such in°uence is strong,

the two equilibria coexist. The coexistence of the equilibria is due to self-ful¯lling expectations.

When a high-quality ¯rm expects the industry's publicity to be high, the di®erence in expected

earnings between a high-quality ¯rm and a low-quality ¯rm is great. Each individual high-

quality ¯rm wants to bene¯t from the publicity by underpricing its own IPO, thereby creating

the clustering in underpricing which ful¯lls the expectations of a high industry publicity. In

contrast, when the industry's publicity is expected to be low, the bene¯t from underpricing

one's own IPO is small and so no individual ¯rm wants to underprice its IPO, supporting the

expectations of a low industry publicity. In this case, high-quality ¯rms signal instead by o®ering

fewer shares to the public at the full price.

The underpricing equilibrium entails large underpricing. When all high-quality ¯rms are

expected to underprice, the bene¯t from the industry's publicity is so large that makes low-

quality ¯rms very likely to mimic high-quality ¯rms; to signal successfully a high-quality ¯rm

must incur a su±ciently high cost in the form of great underpricing. In a simple version of the

model, a high-quality ¯rm gives some shares free to the public in the underpricing equilibrium.

It should be emphasized that high-quality ¯rms underprice IPOs here in order to bene¯t from

the industry's publicity rather than build one's own, although we also examine the latter motive.

Given that the industry's publicity is a public good, the positive link established here between

the clustering of IPO underpricing and the industry's publicity is opposite to a typical externality

story. In usual circumstances, each high-quality ¯rm wants to enjoy the publicity that other ¯rms'

create through IPO underpricing but is reluctant to underprice its own (since IPO underpricing

is costly). What overcomes this free-rider problem in our framework is the presence of private

information about ¯rms' qualities. Since a ¯rm can bene¯t from the industry's publicity only

when it can convince the market of its high quality, a greater industry publicity makes each

high-quality ¯rm more willing to signal. At the same time a greater industry publicity makes

2All equilibria we focus on in this paper are separating equilibria that are re¯ned by the intuitive criterion of Cho
and Kreps (1987). For each value of expected earnings, there is a unique separating equilibrium in the signalling
game, but there are multiple values of expected earnings that are consistent with rational expectations.
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signalling more di±cult by increasing low-quality ¯rms' temptation to mimic, therefore making

IPO underpricing a necessary action for successfully signalling quality.3

There is a large literature on IPO underpricing. Pioneering examples of signalling models

include Allen and Faulhaber (1989), Welch (1989) and Grinblatt and Hwang (1989), who focus

on a single ¯rm's signalling decisions. The main contribution of the current paper to this literature

is to show that large underpricing can be clustered in time and industry. In addition, our paper

recovers a U -shaped relationship between the fraction of shares issued to the public in IPO and

expected earnings. When expected earnings increase from a low level, a high-quality ¯rm signals

the quality by reducing the number of shares issued to the public, without underpricing IPO.

When expected earnings increase from a high level, the ¯rm signals by underpricing IPO and

increasing the number of shares issued to the public. This result reconciles the IPO signalling

literature with the lack of a monotonic relationship between the IPO price and the fraction of

shares withheld by ¯rms' original owners (Michaely and Shaw (1994)).4

There are other theories that explain IPO underpricing. For example, Rock (1986) argues that

underpricing is an outcome of the winner's curse, since uninformed investors must be compensated

with a low o®er price in order to participate. Others attribute a role to underwriters in IPOs

(e.g., Beatty and Ritter (1986) and Benveniste and Spindt (1989)). Although these alternative

explanations are useful and do not necessarily contradict the signalling story, it is not clear how

they imply the clustering of IPO underpricing. For the focus of this paper, we will abstract from

any role of underwriters. The emphasis on a ¯rm's own desire to underprice underscores the

rationality of such underpricing.5

The remainder of this paper is organized as follows. Section 2 describes the demand uncer-

tainty facing Internet ¯rms and the signalling game in IPO. Section 3 solves for the signalling

equilibrium, taking as given the earning di®erence between a high-quality and a low-quality ¯rm.

Section 4 solves for market equilibria where expected earnings depend on the amount of under-

pricing in the industry. Section 5 explores several extensions. Section 6 concludes the paper and

the appendix provides necessary proofs.

3In the current model, clustering occurs as ¯rms try to signal their qualities. This is di®erent from the so-called
\herd" behavior (Banerjee (1992) and Bikhchandani, et al (1992)), where agents ignore their private information
and follow previous agents' actions. An apparent di®erence between the two types of behavior is that herding
occurs only when ¯rms move sequentially but clustering can occur when ¯rms move simultaneously.

4The role of alternative ¯nancing methods such as borrowing also links our model generally to Myers and Majluf
(1984) and speci¯cally to James and Wier (1990) and Slovin and Young (1990). The latter two papers have shown
that IPOs of ¯rms with previously established borrowing relationships are underpriced less than other IPOs. We
do not examine this use of previous borrowing records to signal but rather the reverse casaulity: Underpricing IPO
forces a ¯rm to use alternative ¯nancing methods.

5Despite the huge underpricing, Internet ¯rms do not seem to lay blames on their underwriters. As one chief
executive o±cer of a newly public Internet ¯rm put it, \We don't second-guess what we left on the table. Our eyes
are on the future in terms of building a great company." (Smith and Simon, 1999).
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2. The Structure of the Model

Consider an industry with n ¸ 2 risk-neutral ¯rms, each having a project that requires external
¯nancing of an amount normalized to one. The project's quality, denoted x, is either xH (high-

quality) or xL (low-quality), where xH > xL > 0. The precise value of x is known only to the

¯rm. The public has the prior belief that x = xH with probability ® and x = xL with probability

1¡®, where ® 2 (0; 1). To simplify analysis, let us assume that all n ¯rms decide to seek ¯nancing
at the same time (see Section 5 for discussions on sequential decisions).

A ¯rm can raise the required amount by initial public o®ering (IPO) of its equity. Let the

total number of shares of a ¯rm be 1. The ¯rm chooses the number of shares to be issued to

the public in IPO, f 2 (0; 1], and the o®er price s. The original owners of the ¯rm keep 1 ¡ f
shares. The market price is denoted p. The shares are said to be underpriced if s < p. Denote

the amount of underpricing by d ´ p¡ s. The amount of fund raised through IPO is q ´ sf .
If q < 1, the remainder of the investment is obtained through alternative ¯nancing methods.

Although there may be many such alternative methods, we will simply refer to them as borrowing.

The total cost of borrowing is
¡
1 + bx¡1

¢
(1 ¡ q) for q < 1, where b > 0 is a constant. Thus,

for each dollar borrowed, there is an additional cost bx¡1. An important feature is that the

borrowing cost is a decreasing function of the project's quality. This is realistic: Although the

project's quality is unknown to the public, the lenders can screen the project to ¯nd the true

quality with positive probability and hence o®er a lower loan rate to high-quality projects. Note

also that, for simplicity, the borrowing cost is assumed to be linear in the amount of borrowing.6

Let a ¯rm's earning be rH if it is high-quality and rL if it is low-quality. There are two

components in earnings. The ¯rst component depends on the project's quality and is R0xi=xL

for the project with quality i = H;L, where R0 > 0. This component is known to the ¯rm and

is known to the market once the project's quality is revealed. We refer to this component as

intrinsic earnings of the ¯rm. The second component of the earnings is uncertain to the ¯rm and

hence uncertain to the market even when the project's quality is observed. Let this component

be m for a high-quality ¯rm and, to simplify, 0 for a low-quality ¯rm. Then, the earnings for a

low-quality ¯rm and a high-quality ¯rm are:

rL = R0, rH = R0
xH
xL

+m. (2.1)

The uncertain component m is meant to capture the uncertainty in the demand for products in

a new industry, such as the Internet industry. Most Internet ¯rms produce products or services

6All analytical results in this paper hold also for the cost function (1+b=x)C(1¡q) with the properties C(0) = 0,
C0(0) ¸ 1 and C00 > 0.
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that have no resemblance to traditional ones, but they nevertheless compete against traditional

sectors for customers.7 Public awareness of the industry is important to the growth of each ¯rm

in the industry. Spectacular price gains in IPOs create such publicity. Moreover, a high-quality

¯rm bene¯ts more from the industry's publicity than does a low-quality ¯rm and so the expected

value of m is positive.

To focus on the positive externality created by the industry's publicity, we abstract from the

competition among ¯rms in the industry (see Section 6 for a discussion). For the moment we

also abstract from the e®ect a ¯rm's IPO underpricing has on its own expected earnings (Section

5 analyzes this e®ect) and assume that market expectations on a ¯rm's m depend only on other

¯rms' underpricing. Precisely, let D be the amount of underpricing in IPO by a representative

¯rm that is perceived as high quality; if the market perceives a ¯rm to be high quality, the

expectations on m conditional on D are

E(mjD; the ¯rm's perceived quality = xH) = ½D; (2.2)

where ½ 2 (0; 1) is a constant. We assume that n is a large number so that a high-quality ¯rm's
own expectations on m at the time of deciding the o®er price, conditional on D, are arbitrarily

close to the market's expectation.8

Market expectations of a perceived high-quality ¯rm are RH ´ R0xH=xL + ½D. Since each
individual ¯rm takes D as given, RH is exogenous to each ¯rm. Let I be the probability with

which the market believes that a ¯rm is high-quality, after observing all n ¯rms' IPO prices.

Then the ¯rm's earning expected by the market is

E(rjI) = RI ´ I ¢RH + (1¡ I)R0: (2.3)

The game is played as follows. First, each ¯rm simultaneously chooses and commits to o®ering

f shares of its equity at an o®er price s, while taking RH as given. After IPO the ¯rm borrows

if the IPO receipts are not su±cient to cover the project's investment. Finally, the project is

carried out and the earnings are realized. Each ¯rm pays the creditors ¯rst if there is any debt

and then to the shareholders. Notice that at the time of IPO the ¯rm's borrowing cost is not

7For example, selling books, auctioning goods, providing market information on Internet compete directly
against businesses that organize such activities in traditional ways.

8This assumption is made for simplicity. When a ¯rm makes the IPO decision, it does not observe other ¯rms'
IPO decisions and so its expectations of its own m are ½D[1¡ (1¡ ®)n¡1], where 1¡ (1¡®)n¡1 is the probability
that there is at least one other high-quality ¯rm coming to the IPO market. Such expectations are di®erent from
market expectations (which are made after observing all ¯rms' IPO decisions) and the discrepancy by itself can
make the o®er price deviate from the market price. This discrepancy vanishes when n is large or when ¯rms move
sequentially (Section 5).
Also, one can specify D as the average of underpricing by other high-quality ¯rms rather than the amount of

underpricing by a representative high-quality ¯rm as is done here. The analytical results will not change.

5



publicly observed since the borrowing has not yet occurred, although the amount of borrowing

1 ¡ q can be inferred. We also assume that the net risk-free rate is zero and that the product
market customers have the same information as the investors.

Let us isolate an arbitrary ¯rm and examines its decision. It is convenient to express the

¯rm's decisions as a ´ (f; q) rather than (f; s). In choosing a, the ¯rm intends to maximize the

expected return to the original owners, which is

V (f; q;RI ; x) ´ (1¡ f)
h
RI ¡

³
1 + bx¡1

´
(1¡ q)

i
: (2.4)

This return is known to the ¯rm, since the ¯rm's quality x is known to the ¯rm itself.9

To investors, what matters is the expected return from holding the ¯rm's shares, which is

RI ¡
³
1 + bEIx

¡1
´
(1¡ q);

where EIx
¡1 = Ix¡1H + (1 ¡ I)x¡1L . Let pI be the market price of a ¯rm's share when the

market belief is I. Under rational expectations, the market price equals the expected return to

shareholders and so the expected rate of return per share equals the risk-free rate. Also, for

investors to participate in IPO, the o®er price cannot exceed the market price. Thus

0 · s = q=f · pI = RI ¡
³
1 + bEIx

¡1
´
(1¡ q): (2.5)

As is standard in this environment, a high-quality ¯rm may want to signal its quality. One

way to signal is to reduce the amount of funds raised through IPO. Since any amount that is not

¯nanced through equity must be obtained through alternative ¯nancing methods which bear an

additional cost, reducing the fund raised through IPO signals that the ¯rm's earning ability might

be su±ciently high to justify such a cost. Signalling can be done through the o®er price and/or

the number of shares issued to the public in IPO. Since all ¯rms want the market to believe that

they are high quality, a low-quality ¯rm may want to mimic a high-quality ¯rm. A necessary

condition for successful signalling by a high-quality ¯rm is that it has a higher incentive or ability

to signal than does a low-quality ¯rm. This is the well-known single-crossing property, satis¯ed

in the current model in the following forms:

@

@x

·
¡@V (f; q;R; x)

@R

Á
@V (f; q;R;x)

@q

¸
=
@

@x

·
¡ 1

1 + bx¡1

¸
< 0; (2.6)

@

@x

·
¡@V (f; q;R;x)

@R

Á
@V (f; q;R;x)

@f

¸
=
@

@x

·
1¡ f

R¡ (1 + bx¡1)(1¡ q)

¸
< 0: (2.7)

9Throughout this paper the payo® to a ¯rm refers to the payo® to the original owners of the ¯rm after IPO,
not that to all shareholders.
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These properties are illustrated in Figures 1a and 1b. The relation (2.6) states that, to receive

the same increase in the expectations on earnings \rewarded" by the market, a high-quality ¯rm

is willing to reduce the fund raised through IPO by more than does a low-quality ¯rm. Since the

number of shares issued to the public is held ¯xed in (2.6), the relation equivalently states that a

high-quality ¯rm is willing to reduce the o®er price by more than does a low-quality ¯rm for the

same reward in expected earnings. (2.7) states that, for ¯xed IPO receipts, a high-quality ¯rm is

willing to increase the number of shares issued to the public by more than does a low-quality ¯rm

in order to receive the same reward in expected earnings. Since the IPO receipts are held ¯xed

in (2.7), the relation again states that a high-quality ¯rm is more willing to underprice its IPO

than a low-quality ¯rm. Both properties come directly from the assumption that a high-quality

¯rm faces a lower borrowing cost than a low-quality ¯rm.

Figures 1a and 1b here.

To focus on interesting cases, we now narrow our attention:

Assumption 1. 1A. A high-quality ¯rm, if its quality is publicly known, can make a positive

return even when the investment is 100% debt ¯nanced, i.e.,

R0
xH
xL

¡
µ
1 +

b

xH

¶
> 0:

1B. A low-quality ¯rm, if its quality is publicly known, cannot make a positive return when the

investment is 100% debt ¯nanced, i.e.,

R0 ¡
µ
1 +

b

xL

¶
< 0:

1C. A low-quality ¯rm has a positive payo® if the investment is 100% equity ¯nanced, even when

the ¯rm's quality is publicly known. That is, V (f; 1;R0; xL) > 0 for some f = 1=s ¸ 1=pL.
1D. The intrinsic earning di®erence between high-quality and low-quality ¯rms is not too large:

R0

µ
xH
xL

¡ 1
¶
<
b

xL
:

Assumption 1A provides a high-quality ¯rm with an incentive to signal its quality: Since it

makes a positive return even with 100% debt ¯nancing, it can reduce the IPO receipt to signal its

high quality. The signalling attempt may or may not require underpricing of IPO. Assumptions

1B and 1C make it desirable for a low-quality ¯rm to ¯nance its investment through equity if

its quality is publicly known. Since the quality is not publicly known, these assumptions do not

preclude a low-quality ¯rm from using debt ¯nancing to mimic a high-quality ¯rm. Assumption
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1D is used to isolate the importance of externality in ¯rms' decisions to underprice IPO: In

absence of the externality, Assumption 1D ensures that there is no underpricing (see Section 4).

Assumption 1C can be simpli¯ed. To do so, we obtain the maximum payo® to a low-quality

¯rm when the ¯rm's quality is publicly known. With known low quality, the market price of the

¯rm's share is pL = R0 ¡
³
1 + bx¡1L

´
(1¡ q). Since the number of shares issued in the IPO must

satisfy f ¸ q=pL, the payo® to a known low-quality ¯rm satis¯es

V (f; q;R0; xL) ·
³
1¡ q

pL

´ h
R0 ¡

³
1 + b

xL

´
(1¡ q)

i

= R0 ¡
³
1 + b

xL

´
(1¡ q)¡ q:

The last expression is increasing in q and so it is maximized at q = 1, generating a value R0 ¡ 1.
Conversely, if a low-quality ¯rm chooses to reveal its low quality, it can always choose the actions

(q; f) = (1; 1=R0) and obtain the payo® R0 ¡ 1. Thus, Assumption 1C can be replaced by:
1C 0. R0 > 1.

Before getting into the details of the signalling game, it is important to note that the exter-

nality per se does not generate clustering of underpricing, as stated below:

Proposition 2.1. If ¯rms' qualities are public information then there is no underpricing in

equilibrium.

When each ¯rm's quality is public knowledge, there is no need for a high-quality ¯rm to

signal its quality and a low-quality ¯rm cannot masquerade as a high-quality ¯rm. Each ¯rm's

payo® is maximized by setting q to 1 and the o®er price to the corresponding market price. Each

high-quality ¯rm wants to bene¯t from other high-quality ¯rms' underpricing but is unwilling to

underprice its own IPO. This free-rider problem ensures that in equilibrium with public infor-

mation there is no underpricing by any ¯rm. The existence of private information is critical for

overcoming this free-rider problem.

3. Signalling Equilibrium

For arbitrarily given RH that satis¯es Assumptions 1A¡ 1D, we characterize a ¯rm's strategies.
The result is a best response by the ¯rm to other ¯rms' strategies. For lack of an appropriate

term, we refer to this single ¯rm's best response together with the market's belief as a signalling

equilibrium. In contrast, the true equilibrium where RH is also determined is called a market

equilibrium, an object examined in the next section.

A Bayesian perfect signalling equilibrium is such that for any given RH that satis¯es Assump-

tions 1A ¡ 1D, the following conditions hold: (i) The choices (f; q) maximize the ¯rm's payo®
8



V (f; q;RI ; x) given the beliefs; and (ii) The beliefs are rational according to Bayes updating given

the ¯rm's choices. As is well known, this de¯nition does not su±ciently limit the scope of equi-

librium since the beliefs o® the equilibrium path are arbitrary. In this paper we will employ the

intuitive criterion by Cho and Kreps (1987) to re¯ne the equilibrium (see below) and throughout

this paper the term \equilibrium" means an equilibrium that satis¯es this criterion.

Two types of signalling equilibria may exist. One is pooling equilibria in which both high-

quality and low-quality ¯rms take the same action; the other is separating equilibria in which

the two types of ¯rms take di®erent actions and market's beliefs sort them out according to their

actions. Although separating equilibria are the interest of our analysis, oddly enough the best

way to describe them is to describe a pooling equilibrium ¯rst.

Suppose that the two types of ¯rms take the same action a0 ´ (f0; q0) in a pooling equilibrium.
Then the market's belief upon observing a0 is that the ¯rm is high-quality with probability

I = ®. Denote the payo® to a high-quality ¯rm in this pooling equilibrium by V 0(xH) ´
V 0(f0; q0;R®; xH). Similarly denote V

0(xL) ´ V (f0; q0;R®; xL) as the payo® to a low-quality

¯rm. For the action and the belief to form a pooling equilibrium, the following necessary (but

not su±cient) conditions must be met:

f0; q0 2 [0; 1]; (3.1)

q0=f0 · p® = R® ¡
³
1 + bE®x

¡1
´
(1¡ q); (3.2)

V 0(xL) ¸ R0 ¡ 1. (3.3)

The ¯rst condition is self-explanatory; the second condition requires the o®er price to be at most

the market price; the last condition requires a low-quality ¯rm's payo® in the pooling equilibrium

to be at least that from revealing the ¯rm's type and choosing (q; f) = (1; 1=R0). This condition

also implies that a high-quality ¯rm gets a higher payo® in the pooling equilibrium than from

choosing (q; f ) = (1; 1=R0) and being viewed by the market as a low-quality ¯rm.

The conditions (3.1) and (3.2) can be written in more useful forms. First, since q0=f0 · p®,
the restriction f0 2 [0; 1] is equivalent to p® ¸ q0 ¸ 0. With the expression of price in (3.2), (3.1)
can be rewritten as

1 ¸ q0 ¸ Q0 ´ max
½
0; 1¡ R® ¡ 1

bE®x¡1

¾
: (3.4)

Since R® > R0 > 1 by Assumption 1C
0, Q0 < 1. For q0 ¸ Q0, (3.2) can be replaced by

f0 ¸ S®(q0) ´ q0=
h
R® ¡

³
1 + bE®x

¡1
´
(1¡ q0)

i
: (3.5)

Also, the payo®s V 0(xH) and V
0(xL) are bounded above by R® ¡ 1. Intuitively, the amount

R®¡1 is the ¯rm's payo® when the ¯rm obtains the expected earnings R® without incurring any
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borrowing cost. This is the best the original owners can get in a pooling equilibrium, since the

pooling equilibrium may involve less than 100% equity ¯nancing. This intuition is stated below

(see Appendix A for a proof).

Lemma 3.1. V 0(xH); V
0(xL) · R® ¡ 1.

In the set of actions that satisfy (3.3), (3.4) and (3.5), only those that do not leave any room

for \credible" deviations by a high-quality ¯rm satisfy the Cho-Kreps intuitive criterion. To

describe a credible deviation by a high-quality ¯rm, suppose a deviation (f; q) 6= (f0; q0) satis¯es
the following conditions. First, the deviation is feasible for a high-quality ¯rm, i.e., f; q 2 [0; 1]
and the o®er price does not exceed the implied market price:

0 · q=f · pH = RH ¡ (1 + bx¡1H )(1¡ q): (3.6)

Second, the deviation generates a lower payo® to a low-quality ¯rm than in the pooling equilib-

rium, even when the ¯rm is viewed as a high-quality ¯rm as a result of the deviation:

(1¡ f)
h
RH ¡ (1 + bx¡1L )(1¡ q)

i
< V 0(xL): (3.7)

Third, the deviation generates a higher payo® to the high-quality ¯rm than in the pooling equi-

librium when the ¯rm is viewed as a high-quality ¯rm as a result of the deviation:

(1¡ f)
h
RH ¡ (1 + bx¡1H )(1¡ q)

i
> V 0(xH): (3.8)

Actions (f; q) that satisfy (3.6), (3.7) and (3.8) are credible deviations by a high-quality ¯rm.

The credible deviations can be understood as follows. Deviations that satisfy (3.6) and (3.7)

are feasible to the ¯rms but yield lower payo®s to a low-quality ¯rm than in the pooling equi-

librium, even when the deviator is given the bene¯t of doubt and viewed as a high-quality ¯rm.

Thus, a low-quality ¯rm will not make such deviations. If the deviations also satisfy (3.8), a

high-quality ¯rm would want to make such deviations, given that the market views the deviator

as a high-quality ¯rm. Thus, observing deviations that satisfy (3.6) { (3.8), the market should

intuitively interpret the deviator as a high-quality ¯rm. To satisfy this intuitive criterion, a pool-

ing equilibrium cannot allow for deviations that satis¯es (3.6){(3.8). This restriction on beliefs

o® the equilibrium path eliminates a plethora of equilibria.10

Let us ¯rst examine the set of actions that satisfy (3.6) and (3.7). Under Assumption 1A,

(3.6) can be rewritten as f; q 2 [0; 1] and

f ¸ SH(q) ´ q=
h
RH ¡ (1 + bx¡1H )(1¡ q)

i
: (3.9)

10In the current context, separating equilibria that satisfy the intuitive criterion are the Riley (1979) outcomes.
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To rewrite (3.7), de¯ne a critical level of q as

Q1 ´ 1¡
RH ¡ V 0(xL)
1 + bx¡1L

: (3.10)

Note that Q1 is less than one but is not necessarily greater than zero, depending on the magnitude

of RH . If either Q1 < 0 or q · Q1 then (3.7) is satis¯ed for all f 2 [0; 1]. For q ¸ maxf0;Q1g,
(3.7) can be rewritten as

f > INDL(q) ´ 1¡ V 0(xL)=
h
RH ¡ (1 + bx¡1L )(1¡ q)

i
: (3.11)

The notation INDL indicates that a low-quality ¯rm is indi®erent between choosing the pool-

ing action (f0; q0) and being viewed as a high-quality ¯rm by choosing actions satisfying f =

INDL(q). The set of actions that satisfy the above restrictions is the shaded area in Figure 2a

for Q1 < 0 and in Figure 2b for Q1 > 0.

Figures 2a and 2b here.

The following lemma formally states some properties of the two curves SH(q) and INDL(q)

in Figures 2a and 2b (see Appendix A for a proof):

Lemma 3.2. Under Assumptions 1A ¡ 1C, INDL(q) is an increasing and concave function
for all q > Q1. SH(q) is an increasing and concave function for all q > 0. If Q1 < 0, then

INDL(q) > SH(q) for all q ¸ 0; If Q1 ¸ 0, then there is a unique solution to INDL(q) = SH(q)
in the range q ¸ Q1, denoted QA, and INDL(q) > SH(q) if and only if q > QA. Furthermore, a
high-quality ¯rm's payo® is an increasing function of q along f = SH(q) and a decreasing function

of q along f = INDL(q).

A high-quality ¯rm can consider a deviation from the supposed pooling equilibrium to actions

in the shaded areas in Figures 2a and 2b. As argued before, the market should intuitively view

such deviations as coming from a high-quality ¯rm and attach a belief I = 1 to the deviation.

By the same token, a high-quality ¯rm should consider only deviations that maximize its payo®.

That is, any deviations in the shaded area that are not the best cannot be an equilibrium that

satis¯es the Cho-Kreps criterion, since further deviations from those actions to the best actions

do not change the market's belief (I = 1) but increase the ¯rm's payo®.

The best deviation by a high-quality ¯rm from the supposed pooling equilibrium is arbitrarily

close to and above the action depicted by point A in Figure 2a if Q1 < 0 and in Figure 2b if

Q1 > 0. To see this, note that the ¯rm's payo® increases when actions move toward the southeast

in Figures 2a and 2b and so the best deviations are located arbitrarily close to and above the

11



lower boundaries of the shaded areas in these ¯gures. Moreover, since a high-quality ¯rm's payo®

is an increasing function of q along f = SH(q) and a decreasing function of q along f = INDL(q)

(see Lemma 3.2), the best deviation is arbitrarily close to and above point A in Figures 2a (or

2b). The limit of this deviation is point A.11 That is, the best deviation is

(fb; qb) ´

8
>><
>>:

µ
1¡ V 0(xL)

RH¡1¡bx¡1L
; 0

¶
; if Q1 · 0

(SH(QA); QA); if Q1 > 0:

(3.12)

We now check whether this deviation increases the payo® to a high-quality ¯rm. Relative to

the pooling equilibrium, the deviation (fb; qb) generates the following gain to a high-quality ¯rm:

(1¡ fb)
h
RH ¡ (1 + bx¡1H )(1¡ qb)

i
¡ V 0(xH)

= (1¡ fb)
h
RH ¡ (1 + bx¡1H )(1¡ qb)

i
¡ (1¡ fb)

h
RH ¡ (1 + bx¡1L )(1¡ qb)

i

+
n
(1¡ fb)

h
RH ¡ (1 + bx¡1L )(1¡ qb)

i
¡ V 0(xL)

o
+
£
V 0(xL)¡ V 0(xH)

¤

= b(x¡1L ¡ x¡1H )(1¡ fb)(1¡ qb)¡ b(x¡1L ¡ x¡1H )(1¡ f0)(1¡ q0)

=
b(x¡1

L
¡x¡1

H
)

1+bx¡1
L

[(1¡ fb)RH ¡ (1¡ f0)R®] :

The ¯rst equality follows from adding and subtracting the same terms; the second equality follows

from the fact that the term in f:g is zero by the de¯nitions of (fb; qb); the third equality follows
from substituting the de¯nitions of qb and q0.

The payo® to a high-quality ¯rm from the deviation to (fb; qb) is greater than in any pooling

equilibrium i® (1 ¡ fb)RH > (1 ¡ f0)R®. In this case, there is no pooling equilibrium (that

satis¯es the Cho-Kreps intuitive criterion) and so the best action for a low-quality ¯rm is (f; q) =

(1=R0; 1), yielding a payo® R0 ¡ 1. Replacing V 0(xL) by R0 ¡ 1, the condition Q1 · 0 becomes
RH ¸ R0 + bx

¡1
L and we denote the corresponding values of (fb; qb) by (f

¤; q¤). That is, for

RH ¸ R0 + bx¡1L ,
f¤ = 1¡ R0¡1

RH¡(1+bx¡1L )
; q¤ = 0; (3.13)

and for RH < R0 + bx
¡1
L ,

8
><
>:

f¤ = SH(q
¤);

q¤

RH¡(1+bx¡1H )(1¡q¤) = 1¡ R0¡1
RH¡(1+bx¡1L )(1¡q¤) :

(3.14)

We have the following propositions (see Appendix B for a proof):

11In the borderline case Q1 = 0 (where point A coincides with the origin of the plane), the best deviation is
f = " > 0 and q = 0, where " is su±ciently small. Since this case involves underpricing, it can be grouped with
the case Q1 < 0.
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Proposition 3.3. Under the Cho-Kreps intuitive criterion, there is a unique separating signalling

equilibrium for given RH . In such an equilibrium, a high-quality ¯rm's actions are (f ¤; q¤),

characterized by (3.13) when RH ¡ R0 ¸ bx¡1L and by (3.14) when RH ¡ R0 < bx¡1L . A low-

quality ¯rm's actions are (f; q) = (1=R0; 1).

Proposition 3.4. A pooling signalling equilibrium for given RH exists only when Q1 < 0 and

q0 < 1¡R®=RH . There exist ¹®;® 2 (0; 1) such that, if ® > ¹®, pooling equilibria exist for suitably

restricted actions and beliefs. If ® < ®, no pooling equilibrium exists.

The reason that some pooling equilibria survive the Cho-Kreps re¯nement is that the amount

of funds raised through IPO cannot be less than zero. This limits the extent to which a high-

quality ¯rm can signal. When the expected earning of a high-quality ¯rm is su±ciently higher

than that of a low-quality ¯rm, the high-quality ¯rm must incur a su±ciently high signalling cost

in order to prevent a low-quality from mimicking. With the lower bound on the amount of fund

raised through IPO, this becomes di±cult and so some pooling equilibria with small IPO receipts

can survive. In particular, when the prior for a high-quality ¯rm, ®, is large, the di®erence

between R® and R0 is large and so the bene¯t from mimicking is large. Even with a very low q, a

low-quality ¯rm may get a higher payo® from mimicking than from taking the separating action,

in which case the pooling equilibrium exists. When ® is small, in contrast, mimicking does not

pay and so the pooling equilibrium does not exist.

A high-quality ¯rm has a preference over the two ways to signal. One is to reduce the

number of shares issued to the public in IPO without underpricing and the other is to underprice

IPO. Both methods reduce the amount of funds raised through IPO and achieve the purpose of

signalling. However, reducing the number of shares without underpricing IPO is preferable. By

reducing the number of shares issued to the public without underpricing, the ¯rm keeps a larger

stake of the ¯rm and hence of its future earnings. In contrast, if the ¯rm underprices its IPO it

must give up a large number of shares to the public in IPO in order to raise the same amount

of funds. This is more costly to the original owners of the ¯rm than the ¯rst method since they

give up a larger claim on the ¯rm's future earnings.

Despite this preference, a high-quality ¯rm chooses to underprice IPO in some cases. This is

because there is a limit to which a high-quality ¯rm can signal by reducing f . Even reducing

f to zero can only signal an expected earning of R0 + bx
¡1
L .

12 For expected earnings that are

higher than this level, the ¯rm must sacri¯ce even more in order to prevent a low-quality ¯rm

from mimicking and this requires underpricing IPO.

12This is obtained by setting (f; q) = (0; 0) and V 0(xL) = R0 ¡ 1 in the equality form of (3.11).
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Therefore, the number of shares issued by the ¯rm to the public in IPO has a U -shaped

relationship with the ¯rm's expected earnings, as depicted in Figure 3. When a high-quality

¯rm's expected earnings increase from low levels, the number of shares issued to the public

decreases, while IPO is at the full market price. This continues until the number of shares issued

to the public reaches a minimum (which is zero in this version of the model). When expected

earnings increase further, there is no more room to cut the number of shares issued to the public

and so the ¯rm signals by discounting IPO and increasing f . When the minimum of f is above

zero, as shown in Section 5, the response of f to expected earnings can still be U -shaped even

in the underpricing region. This absence of a monotonic (negative) relationship between f and

underpricing is in contrast to previous signalling models but is consistent with the empirical

¯nding of Michaely and Shaw (1994).

Figures 3 and 4 here.

A high-quality ¯rm's best response to other high-quality ¯rms' decisions can be summarized

by an underpricing curve, depicted in Figure 4. Denote

D0 =
1

½

·
b

xL
¡R0

µ
xH
xL

¡ 1
¶¸
: (3.15)

Then RH ¡ R0 ¸ bx¡1L if and only if D ¸ D0. Note that Assumption 1D requires D0 > 0. A

high-quality ¯rm's underpricing is

d =

8
><
>:

0; if D < D0

pH = ½D +R0xH=xL ¡ 1¡ bx¡1H ; if D ¸ D0:
(3.16)

4. Market Equilibrium

Now we solve for the market equilibrium by solving for the expected earnings RH . From now on

only the separating equilibrium is considered. Since such equilibrium is unique for any given RH ,

the multiplicity of market equilibria in this section has nothing to do with the usual multiplicity

associated with signalling equilibria; instead, it arises because multiple values of RH can be

supported by rational expectations.

A symmetric market equilibrium is a pair (d;D) such that d = D and that d is a best response

to D given by (3.16). Imposing the symmetric requirement d = D on (3.16) solves for the market

equilibrium, as shown in Figure 4. To characterize market equilibria, denote

½ ´ bx¡1L ¡R0(xH=xL ¡ 1)
b(x¡1L ¡ x¡1H ) +R0 ¡ 1

: (4.1)
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Note that 0 < ½ < 1 under Assumptions 1A and 1D. The following proposition can be directly

proved and the proof is omitted:

Proposition 4.1. Under Assumptions 1A¡1D, a market equilibrium with no IPO underpricing
exists for all 0 · ½ < 1. A market equilibrium with IPO underpricing exists if and only if

½ · ½ < 1. Thus, when 0 · ½ < ½, only the no-underpricing market equilibrium exists; when

½ · ½ < 1, both the underpricing equilibrium and the no-underpricing equilibrium exist.

Figure 4 depicts the case ½ < ½ < 1. The no-underpricing market equilibrium is at point EN

and the underpricing market equilibrium is at point EU .13

Several aspects of the above proposition are noteworthy. First, the no-underpricing equilib-

rium exists for all ½ 2 [0; 1). It is the only equilibrium when 0 · ½ < ½, in which case the level
D0 is su±ciently large and the underpricing curve is su±ciently °at that the entire underpricing

curve lies below the 45-degree line in Figure 4. An implication of this result is that there would

be no IPO underpricing if there were no externality through the industry's publicity.14

Second, the underpricing equilibrium and the no-underpricing equilibrium both exist when

the externality is su±ciently strong (i.e. when ½ · ½ < 1). The coexistence of the two types of
equilibria is an outcome of self-ful¯lling expectations. If a high-quality ¯rm expects that other

high-quality ¯rms will not underprice, the di®erence in expected earnings between a high-quality

¯rm and a low-quality ¯rm is not large, as maintained by Assumption 1D. Then the low-quality

¯rm's temptation to mimic is not very strong, in which case a high-quality ¯rm can separate

itself from a low-quality ¯rm by reducing the number of shares in IPO without underpricing. In

contrast, if a high-quality ¯rm expects that other high-quality ¯rms will underprice, the di®erence

in expected earnings between a high-quality ¯rm and a low-quality ¯rm is large, due to the

industry's publicity. A low-quality ¯rm's temptation to mimic is strong in this case and so

underpricing is necessary for a high-quality ¯rm to separate itself from a low-quality ¯rm. The

coexistence of a no-underpricing equilibrium with the underpricing equilibrium illustrates the

fragility of large underpricing in IPOs.

Third, the large underpricing tends to be clustered in time and in particular industries, since

underpricing is the best response to other ¯rms' underpricing in the underpricing equilibrium.

As noted before (Proposition 2.1), the externality through the industry's publicity is necessary

13When ½ · ½ < 1, there might also be a mixed-strategy equilibrium at D = D0 if we allow each high-quality
¯rm to underprice with a probability in (0; 1). To the issues that we focus on in this paper, such as clustering of
underpricing, examining the mixed-strategy equilibrium does not add much.
14As noted before, Assumption 1D is important for this result. When the intrinsic earning di®erence between a

high-quality and a low-quality ¯rm is large enough to violate Assumption 1D, then ½ < 0 and there is a need for a

high-quality ¯rm to underprice anyway. In fact, only the underpricing equilibrium exists in this case.
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for the clustering in our story, but it alone would suppress clustering rather than induce it: The

free-rider problem presented by the externality tends to reduce each high-quality ¯rm's incentive

to underprice. It is the asymmetric information and hence high-quality ¯rms' desire to signal the

quality that induces each of them to underprice. That is, by increasing the bene¯t for low-quality

¯rms to mimic, the externality through publicity forces a high-quality ¯rm to underprice IPO if

it wants to signal its quality and to capture the bene¯t of the externality. In fact, the stronger

the externality (i.e., the larger the ½), the larger the underpricing.

Besides expectations, whether a high-quality ¯rm underprices and by how much it underprices

depend also on some fundamental features of the economy. One such fundamental is the borrowing

cost, which can be captured by the parameter b. When b is larger, the borrowing cost is higher and

underpricing is more costly for a ¯rm, since underpricing forces the ¯rm to borrow. In this case,

the minimum level of ½ that is necessary for inducing underpricing is higher, making underpricing

less likely. The amount of underpricing is also lower. Simply put, a higher borrowing cost makes

signalling more e®ective and so less or no underpricing is needed.

Another fundamental is the average earnings by ¯rms in the sector. Since a decrease in

R0 reduces expected earnings of both a high-quality ¯rm and a low-quality ¯rm, it reduces the

average expected earnings. Similar to an increase in the borrowing cost, a decrease in R0 makes

underpricing less likely and reduces the amount of underpricing if underpricing occurs. This is

because a reduction in R0 reduces the intrinsic earnings di®erence between a high-quality ¯rm

and a low-quality ¯rm, which reduces the temptation for a low-quality ¯rm to mimic and hence

reduces the need for underpricing as a signalling method.

Both b and R0 are likely to °uctuate over business cycles. Since a business downturn is

likely to generate both a higher borrowing cost and a lower average earnings, the frequency of

underpricing and the magnitude of underpricing are likely to be lower in business downturns than

in expansions. Likewise, underpricing is likely to be more common in economies where ¯rms have

an easy access to the credit market than in economies with a di±cult access.

The model is capable of producing large underpricing. In this version of the model, an

underpricing ¯rm o®ers the shares free of charge! That is, when the expected earning di®erence

between a high-quality ¯rm and a low-quality ¯rm passes the critical level bx¡1L , the amount

of underpricing jumps discontinuously from zero to 100% and the o®er price drops to zero. Of

course, a zero o®er price is unrealistic. The section below extends the model to generate a positive

o®er price in the underpricing equilibrium. Also, we investigate alternative assumptions about

the externality and the timing structure of the signalling game.
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5. Extensions

5.1. Lower Bound on Equity Financing

A ¯rm may not be able to borrow as much as it likes. This puts a lower bound on the amount

of fund that the ¯rm must raise through IPO. Let this lower bound be Qbs=p, where Qb 2 (0; 1).
This speci¯cation incorporates the idea that, if a ¯rm's IPO experiences a price gain, lenders may

lend more to the ¯rm (particularly when the lender is uninformed about the ¯rm's quality even

after screening). Substituting the expression for p, the constraint q ¸ Qbs=p for a high-quality
¯rm can be written as:

f ¸ Qb

RH ¡ (1 + bx¡1H )(1¡ q)
´ LB(q): (5.1)

With this constraint, the separating action depicted by point A in Figures 2a and 2b may no

longer be feasible to a high-quality ¯rm. A scenario is depicted in Figure 5 for the case Q1 > 0,

in which the best separating action is given by point B rather than A. There is IPO underpricing

in this case since point B lies above the full-price curve f = sH(q). That is, since the number

of shares that the ¯rm can issue to the public is bounded from below by (5.1), a high-quality

¯rm gets into the underpricing phase even for small di®erences RH ¡R0 that would not call for
underpricing in the absence of the constraint. The underpricing signalling equilibrium exists if

and only if the curve f = LB(q) crosses the curve f = INDL(q) before crossing f = SH(q).

Equivalently, this requires INDL(Qb) > SH(Qb).

Figure 5 here.

Two properties of the separating equilibrium in this extension are in contrast with the simple

model. First, an underpricing ¯rm's o®er price can be positive, as at point B in Figure 5.

Second, the number of shares issued to the public by a ¯rm does not necessarily increase with the

earnings when the amount of underpricing is small. In Figure 5, for example, when RH increases,

the curve f = INDL(q) shifts up but the curve f = LB(q) shifts down. These two forces change

f in opposite ways and so analytically the e®ect of RH on f is ambiguous in the underpricing

equilibrium. When the externality is su±ciently strong, however, f is likely to increase with RH .

In this case the magnitude of underpricing is large, as in the simple model.

5.2. A Firm's Own In°uence on Publicity

In the simple model we assumed that a high-quality ¯rm bene¯ts from other high-quality ¯rms'

IPO underpricing but not from its own underpricing. However, it is frequently suggested that a

¯rm underprices IPO to create publicity for itself. To investigate this motive, let us return to the
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simple model and modify the speci¯cation of market expectations on m as

E(mjD; d;perceived quality of the ¯rm = xH) = ½(°d+D);

where ° > 0 is the relative impact of the ¯rm's own underpricing on its expected earnings. The

simple model examined before corresponds to ° = 0. To facilitate discussion in the current case,

let us restrict 0 · ½ < 1=°.
Now that RH = R0xH=xL + ½(°d + D), which depends on the ¯rm's own action, the ¯rm

cannot take RH as given. Denote the part that the ¯rm takes as given by W = R0xH=xL + ½D.

The market price of a ¯rm under the market's belief I can be found as

pI =
1

1¡ I½°
h
IW + (1¡ I)R0 ¡ I½°q=f ¡ (1 + bEIx¡1)(1¡ q)

i
: (5.2)

The constraint s · pH can be written as

f ¸ q=
h
W ¡ (1 + bx¡1H )(1¡ q)

i
: (5.3)

The following proposition shows that the qualitative results in this extended environment are

similar to those in the simple model (see Appendix C for a proof):

Proposition 5.1. There exist °1 > 0 and ½1 2 (0; 1=(1 + °)) such that an underpricing equilib-
rium exists if ½ 2 (½1; 1=(1 + °)) and ° · °1. There exist °2 > 0 and ½2 2 (0; 1=°) such that a
no-underpricing market equilibrium exists if 0 · ½ < ½2 and ° · °2. Moreover, ½1 < ½2 and so
the two market equilibria coexist when ½ 2 (½1; ½2) and ° · minf°1; °2g.

5.3. Sequential Decisions

The simple model illustrates the tendency for IPO underpricing to cluster if ¯rms go to the

IPO market at the same time. Of course, by assuming ¯rms to move simultaneously we do not

mean that ¯rms in reality literally make their IPO decisions at the same date. Rather, we mean

that some ¯rms' IPO dates may be close to each other so that one ¯rm cannot change the IPO

decision to take into account of observed actions by other ¯rms. Although this interpretation is

appealing, one may still want to know what happens if ¯rms can modify their IPO decisions upon

observing other ¯rms' actions. This we analyze now. We show that there still is a tendency for

IPO underpricing to cluster in such a sequential game.

Consider only two ¯rms, ¯rm 1 and ¯rm 2. Firm 1's IPO is at date 1 and ¯rm 2's is at date 2;

such timing is determined by exogenous restrictions. To simplify matters, we assume that both

¯rms have earnings only at date 2 and there is no time discounting. Let di be the amount of

underpricing by ¯rm i = 1; 2. The market's expectations on ¯rm i's m, given the perception that
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the ¯rm is high quality, are given by (2.2) with D being replaced by di0 (i
0 6= i). The appropriate

restriction on ½ in this case is 0 · ½ < ®¡1=2.
Given d1, ¯rm 2's pricing decision is analogous to that analyzed in the simple model. That

is, if ¯rm 2 is a low-quality ¯rm, then d2 = 0; if ¯rm 2 is a high-quality ¯rm, then

d2 =

8
><
>:

0; if d1 < D0

½d1 +R0xH=xL ¡ 1¡ bx¡1H ; if d1 ¸ D0;

where D0 is de¯ned in (3.15).

For ¯rm 1, it anticipates the in°uence of its pricing decision on ¯rm 2's. Given the prior on

¯rm 2's quality, ¯rm 1's expectations on ¯rm 2's amount of underpricing are

®Â(d1>D0)(½d1 +R0xH=xL ¡ 1¡ bx¡1H );

where Â(d1>D0) = 1 if d1 > D0 and 0 otherwise. Suppose ¯rm 1 chooses d1 < D0. Then d2 = 0

and there is no publicity from which ¯rm 1 can bene¯t. In this case ¯rm 1's best decision is

d1 = 0 and the payo® to both ¯rms is identical to that in the no-underpricing equilibrium in the

simple case. This can be a market equilibrium in the current case if and only if the payo® to ¯rm

1 is not lower than that generated by the action d1 ¸ D0.
Now suppose ¯rm 1 chooses d1 ¸ D0. If the market believes that the ¯rm is high-quality with

probability I, then the expected earning of the ¯rm is

RI = (1¡ I)R0 + I
h
R0xH=xL + ½®(½d1 +R0xH=xL ¡ 1¡ bx¡1H )

i
:

Slightly abuse notation to denote W = (1 + ½®)R0xH=xL ¡ ½®(1 + bx¡1H ). The market price of
such a ¯rm under the belief I is

pI =
1

1¡ I®½2
h
IW + (1¡ I)R0 ¡ I®½2q=f ¡ (1 + bEIx¡1)(1¡ q)

i
:

This is similar in form to the market price in the last subsection, with ®½2 replacing ½°, and so

the o®er price decision of ¯rm 1 can be analyzed analogously to that in the proof of Proposition

5.1. The proof of the following result is in Appendix D:

Proposition 5.2. There exist ½3; ½4 2 (0; ®¡1=2) such that ¯rm 1 underprices IPO if and only if

it is high-quality and ½ 2 (½3; ½4). Firm 2 underprices IPO if and only if it is high-quality and if

¯rm 1 underprices IPO.

Example 5.3. The interval (½3; ½4) can be non-empty: When ® = 0:1, b = 0:2, xL = 1, xH =

1:18 and R0 = 1:02, ½3 = 1:75 < ½4 = 1:91.
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As the example shows, there are cases in which IPO underpricing occurs. The important

point is that, when ¯rm 1 underprices IPO, ¯rm 2 will do so as well if it is high quality. Since

such underpricing would not occur if the ¯rm were the only one in the industry or if publicity

had no e®ect on expected earnings, the result shows the tendency of clustering in underpricing,

just as in the case of simultaneous decisions. It is not surprising then that underpricing in the

case of sequential moves also requires the externality to be strong enough (i.e., ½ > ½3).
15

In contrast to the case of simultaneous moves, too strong an externality (i.e., ½ > ½4) will

destroy the underpricing equilibrium in the current case. This is because ¯rm 1 can entice high-

quality ¯rm 2 to underprice and so, loosely put, ¯rm 1 can choose between the underpricing

equilibrium and the no-underpricing equilibrium. Only when the payo® in the underpricing

equilibrium is higher than without underpricing does ¯rm 1 choose to underprice IPO. Since large

underpricing is costly, an underpricing equilibrium is not always better than no-underpricing. In

particular, when ½ > ½4, the amount of underpricing required to separate a high-quality ¯rm from

a low-quality one is so large that makes underpricing not worthwhile to ¯rm 1.

Multiplicity of equilibria disappears with sequential moves. However, this may be an artifact

of the exogenously ¯xed order of moves by the two ¯rms. Being a ¯rst mover is costly in the

current setup. Firm 1 must underprice su±ciently in order to entice ¯rm 2 to underprice. If

¯rms could choose when to go to the IPO market, it would be likely that they choose to go to

the market at the same date. Then, in the absence of coordination the multiplicity analyzed in

the simple model would reappear.16

6. Conclusion

In this paper we have shown that large magnitudes and the clustering of Internet IPO underpricing

can be attributed to ¯rms' desire to bene¯t from the industry's publicity. We assume that each

¯rm has private information about its quality and, if perceived as high-quality, a ¯rm's expected

earnings increase with the industry's publicity that is generated by all ¯rms' IPO underpricing.

In this environment, a high-quality ¯rm will not underprice its IPO if it expects other ¯rms not

to underprice, but it will underprice its IPO if it expects other ¯rms to do so and if the ¯rm's

expected earnings increase su±ciently with the industry's publicity. Thus there is clustering

in IPO underpricing and the magnitude of underpricing is large if the publicity is great. The

industry's publicity induces a high-quality ¯rm to take such a costly action as IPO underpricing

15Firm 1's underpricing is not always echoed by ¯rm 2, since ¯rm 2 may turn out to be a low-quality ¯rm. This
uncertainty is eliminated in the case of simultaneous moves with the assumption of a large number of ¯rms. As a
result, the amount of underpricing is larger there than here.
16Tambanis and Bernhardt (1999) explicitly model the possibility that ¯rms can delay the timing of their equity

issue. However, they do not analyze IPO underpricing.
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because the publicity increases the temptation for a low-quality ¯rm to mimic a high-quality ¯rm,

which makes IPO underpricing necessary for a high-quality ¯rm to separate itself out. Private

information is critical for the story: If a ¯rm's quality were public information, the publicity

would only induce free-riding and eliminate underpricing altogether.

Although our analysis is phrased for the Internet industry, the results are not con¯ned to

this industry but rather applicable to any industry where the industry's publicity is important to

each good ¯rm's expected earnings. At this general level, our results indicate that the clustering

of large IPO underpricing is both fragile and speci¯c | fragile because large underpricing is

unlikely to occur if other ¯rms in the industry are not expected to underprice; speci¯c because

important for the story is some publicity that ¯rms collectively bene¯t from. Thus, the clustering

of underpricing may be only a temporary phenomenon for new industries such as the Internet

industry where publicity is likely to yield a large bene¯t initially. As the industry becomes

established, competition against other ¯rms in the same industry becomes more important than

against ¯rms in traditional sectors. In this case one ¯rm's underpricing may hurt rather than

bene¯t other ¯rms in the same industry and so clustering of large IPO underpricing becomes

rare.17 Alternatively, clustering of large underpricing may disappear when there is adverse news

about the new industry.18 The fragility and speci¯city of the clustering of underpricing might

explain why there is no strong evidence supporting a monotonic relationship between ¯rms' IPO

underpricing and expected earnings (Michaely and Shaw (1994)).

Our model also indicates that clustering of IPO underpricing is more likely to occur when

the marginal borrowing cost is low than when it is high, or when the average return to ¯rms is

high than when it is low. Thus, even for established industries, more ¯rms will underprice IPOs

when the economy is in good times than in bad times. Moreover, the model suggests that there

need not be a general, monotonic relationship between the fraction of the stake withheld by the

¯rm's original owners and the ¯rm's expected earnings, a relationship emphasized by pervious

signalling models but rejected empirically by Michaely and Shaw (1994).

To conclude the paper, we note that IPO underpricing is a form of advertisement for a ¯rm.

This is true in previous signalling models, but more so in the current model since the intention

to underprice here is to bene¯t from the industry's publicity. The question is then why a ¯rm

chooses this form of advertisement over other advertising methods. As explained by Allen and

17Competition among ¯rms in the industry corresponds to the case ½ < 0. Since underpricing is the best response
to other ¯rms' underpricing only if ½D > bx¡1L ¡ R0(xH=xL ¡ 1) (see (3.15) and (3.16)), under Assumption 1D
there cannot be an underpricing equilibrium when ½ < 0.
18An example is the Biotech industry that experienced large underpricing in IPOs at the beginning of the 1990s.

The heat over biotech stocks cooled down considerably when the Food and Drug Administration rejected several
promising drugs such as Centocor Inc.'s Centoxin, a medicine meant to ¯ght a deadly bacteria infection common
in surgery patients.
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Faulhaber (1989), other advertising methods must be monitored in order for them to be credible,

which may be costly or impossible for each investor. In contrast, IPO underpricing requires no

monitoring and regulations require the ¯rm to commit to the o®er price. IPO underpricing also

reduces the probability of lawsuits if subsequently the ¯rm does not do well. More speci¯c to

the environment in this paper, other advertising methods may not be e®ective when the entire

industry has just started. In contrast, large gains in share prices of ¯rms in the industry are

\hard" evidence that might convince investors about the industry's bright future.
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Appendix

A. Proofs of Lemmas 3.1 and 3.2

For Lemma 3.1, we have:

V 0(xH) = (1¡ f0)
h
R® ¡

³
1 + bx¡1H

´
(1¡ q0)

i

· ©
1¡ q0=

£
R® ¡

¡
1 + bE®x

¡1¢ (1¡ q0)
¤ª h
R® ¡

³
1 + bx¡1H

´
(1¡ q0)

i

·
n
1¡ q0=

h
R® ¡

³
1 + bx¡1H

´
(1¡ q0)

io h
R® ¡

³
1 + bx¡1H

´
(1¡ q0)

i

= R® ¡
³
1 + bx¡1H

´
(1¡ q0)¡ q0

· R® ¡ 1:

The ¯rst inequality follows from substituting the lower bound for f0 in (3.5); the second inequality

follows from the fact that the preceding expression is increasing in x; and the last inequality follows

from the fact that the preceding expression is increasing in q0. The same procedure establishes

V 0(xL) · R® ¡ 1.
For Lemma 3.2, the monotone and concavity features of SH(q) and INDL(q) can be veri¯ed

directly. To prove other properties stated in the lemma, note that

SH(1) = 1=RH < 1=R® < 1¡ (R® ¡ 1)=RH < 1¡ V 0(xL)=RH = INDL(1):

The third inequality above follows from Lemma 3.1.

Consider ¯rst the case Q1 < 0 (see Figure 2a). In this case the relevant range of q is q 2 [0; 1].
Since Q1 < 0, we have

SH(0) = 0 < 1¡ V 0(xL)=(RH ¡ 1¡ bx¡1L ) = INDL(0):

Thus, the curve INDL(q) lies above the curve SH(1) at both ends. If we can show that the curve

INDL(q) crosses the curve SH(q) always from below if they ever cross each other in the positive

quadrant, then there cannot be any crossing between the two curves, i.e., SH(q) < INDL(q) for

all q 2 [0; 1]. To show the crossing property, suppose that the two curves cross each other at
qc 2 [0; 1], i.e.,

1¡ V 0(xL)=
h
RH ¡ (1 + bx¡1L )(1¡ qc)

i
= qc=

h
RH ¡ (1 + bx¡1H )(1¡ qc)

i
: (A.1)

Computing the derivatives IND0L(q) and S
0
H(q) and substituting V

0(xL) from (A.1) shows that

IND0L(qc)¡ S0H(qc) has the same sign as that of the following expression:

[RH ¡ (1 + bx¡1L )(1¡ qc)]qcbx¡1H +
h
RH ¡ (1 + bx¡1H )(1¡ qc)¡ qc

i
£n

(1 + bx¡1L )
h
RH ¡ (1 + bx¡1H )(1¡ qc)

i
¡
h
RH ¡ (1 + bx¡1L )(1¡ qc)

i
)
o
:
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The expression in f:g is clearly positive. Also, Assumption 1A implies

RH ¡ (1 + bx¡1H )(1¡ qc)¡ qc > RH ¡ (1 + bx¡1H ) > 0:

Since Q1 < 0, then RH ¡ (1 + bx¡1L )(1¡ qc) > V 0(xL) > 0. Thus, IND0L(qc) > S0H(qc). That is,
the curve INDL(q) is steeper than the curve SH(q) whenever the two cross each other. This is

the desired result and so SH(q) < INDL(q) for all q 2 [0; 1] in this case.
Consider now the case Q1 > 0. Since INDL(q) < 0 and SH(q) > 0 if 0 · q < Q1, the two

curves cannot cross each other in this range. Thus, consider only the range q ¸ Q1. In this range
the above proof for the crossing property between INDL(q) and SH(q) goes through. Moreover,

INDL(Q1) = 0 < SH(Q1). Therefore, there is a unique crossing between the two curves.

Along f = INDL(q), a high-quality ¯rm's payo® is

[1¡ INDL(q)][RH ¡ (1 + bx¡1H )(1¡ q)] = V 0(xL) ¢
RH ¡ (1 + bx¡1H )(1¡ q)
RH ¡ (1 + bx¡1L )(1¡ q)

;

which is a decreasing function of q. Along f = SH(q), a high-quality ¯rm's payo® is

[1¡ SH(q)]
h
RH ¡ (1 + bx¡1H )(1¡ q)

i
= RH ¡ (1 + bx¡1H )(1¡ q)¡ q;

which is an increasing function of q. QED

B. Proofs of Propositions 3.3 and 3.4

We locate the position of the pooling action (f0; q0). Since the pooling action must satisfy (3.5),

it must lie on or above the curve f = S®(q). Also, it can be veri¯ed that INDL(q0) > f0 and so

the point (f0; q0) must lie below the curve f = IND(q). This implies f0 > fb in the case Q1 > 0

(see Figure 2b).

Consider ¯rst the case Q1 > 0 (Figure 2b). Since fb < f0 in this case and RH > R®, the gain

to a high-quality ¯rm from the deviation to (fb; qb) is strictly positive. Thus there cannot be a

pooling equilibrium in this case. The only equilibrium is a separating equilibrium (f ¤; q¤) de¯ned

by (3.14). The condition corresponding to this case, Q1 > 0, becomes RH ¡R0 < bx¡1L .
Now consider the case Q1 · 0, where the separating actions are given by (3.13). These

actions may not necessarily generate a higher payo® to a high-quality ¯rm than in the pooling

equilibrium. In fact, since

(1¡ fb)RH ¡ (1¡ f0)R® = V 0(xL)

RH¡(1+bx¡1L )
RH ¡ (1¡ f0)R®

= 1¡f0
RH¡(1+bx¡1L )

[R® ¡RH(1¡ q0)] ;

the gain to a high-quality ¯rm from deviating from the pooling action to (fb; qb) is strictly positive

if and only if q0 > 1¡R®=RH . Thus, (f¤; q¤) form a unique separating equilibrium against pooling
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actions with q0 su±ciently close to 1. In this case the corresponding condition (Q1 · 0) becomes
RH ¡R0 ¸ bx¡1L . This completes the proof of Proposition 3.3.

For Proposition 3.4, we know from the above that a pooling action satis¯es the Cho-Kreps

intuitive criterion if and only if (3.3), (3.4), (3.5), Q1 · 0 and q0 · 1 ¡R®=RH are all satis¯ed.

From the de¯nition of Q0 in (3.4) we have Q0 > 0 if and only if R® ¡ 1¡ bE®x¡1 < 0, i.e., i®

® < ®0 ´
1 + bx¡1L

RH + b(x
¡1
L ¡ x¡1H )

:

Note that ®0 2 (0; 1) under Assumption 1A. Consider the case ® > ®0 and so Q0 < 0, in which
case all q0 2 (0; 1 ¡ R®=RH ] satisfy (3.4). For any such q0, let f0 be such that (3.5) holds with
equality and note f0 2 (0; 1). The payo® to a low-quality ¯rm from this pooling action is

·
1¡ q0

R® ¡ (1 + bE®x¡1)(1¡ q0)

¸ h
R® ¡ (1 + bx¡1L )(1¡ q0)

i
:

Both terms of the product are increasing functions of q0 (for q0 > 0 > Q0). Thus the payo®

is maximized by setting q0 = 1 ¡ R0=RH . If this maximum pooling payo® satis¯es (3.3) with

strict inequality, then there exist q's lower than but close to q0 that satisfy (3.3) as well. After

substituting R® = R0+®(RH ¡R0) and E®x¡1 = x¡1L ¡®(x¡1L ¡x¡1H ), the requirement that the
maximum pooling payo® satisfy (3.3) with strict inequality can be written as

®¡ 1¡ ®
RH ¡ 1¡ bx¡1L + b®(x¡1L ¡ x¡1H )

+
RH ¡R0(1 + bx¡1L )

(RH ¡R0)(RH ¡ 1¡ bx¡1L )
> 0:

The left-hand side of the above inequality is an increasing function of ®. When ® = 0, its value

is negative. When ® = 1, its value has the same sign as

(RH ¡R0)(RH ¡ 1¡ bx¡1L ) +RH ¡R0(1 + bx¡1L ):

This is positive, since RH ¸ R0 + bx
¡1
L (as Q1 · 0) and the above expression has a value 0

when RH = R0 + bx
¡1
L . Therefore there exists ® 2 (0; 1) such that (3.3) is satis¯ed with strict

inequality for the above described (f0; q0) if ® > ®. De¯ne ¹® ´ maxf®0; ®g. For ® > ¹®, there

exist pooling actions (f0; q0) that satisfy the Cho-Kreps intuitive criterion. These actions can be

supported as pooling equilibria for given RH by the following beliefs: Any deviation from such

(f0; q0) is believed to be coming from a low-quality ¯rm.

On the other hand, if ® < ®, no pooling action satis¯es the Cho-Kreps intuitive criterion.

QED.

C. Proof of Proposition 5.1

Let V 0L be the payo® to a low-quality from a pooling action (f0; q0). As in the simple model,

we ¯nd separating actions that generate lower payo®s to a low-quality ¯rm than in a pooling
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equilibrium. Then we choose the best among these actions as a candidate for the action of a

high-quality ¯rm in a separating equilibrium. If a low-quality ¯rm deviates from the pooling

action to an action (f; q) and is perceived as a high-quality ¯rm, the payo® is

(1¡ f)
h
W + ½°(pH ¡ s)¡ (1 + bx¡1L )(1¡ q)

i
=
1¡ f
1¡ ½° [W ¡ ½°q=f ¡ (1 + z)(1¡ q)] ;

where W = R0xH=xL + ½D and z = ½°b=xH + (1¡ ½°)b=xL. This payo® is less than that in the
pooling equilibrium if and only if

q < G(f) ´ 1 + z ¡W + (1¡ ½°)V 0L=(1¡ f )
1 + z ¡ ½°=f , for f >

½°

1 + z
;

q > G(f), for f <
½°

1 + z
:

Figures 6a and 6b here.

Let us divide the proof into two cases.

Case 1: W > (1 + z)[1 + (1 ¡ ½°)V 0L=(1 + z ¡ ½°)]. This case is depicted in Figure 6a. Let
SH(q) now denote the right-hand side of (5.3) and let its inverse be S

¡1
H . It can be shown that

there exists °1 > 0 such that G(f) > S
¡1
H (f) in the region f < ½°=(1 + z) if ° · °1, as depicted

in Figure 6a. Restrict attention to ° · °1. In this case the relevant region is f > ½°=(1 + z) and
the shaded area is the set of actions that yield lower payo® to a low-quality ¯rm but may yield

higher payo® to a high-quality ¯rm than in the pooling equilibrium. The following properties can

be veri¯ed for the segment of G(f) with f > ½°=(1 + z):

(1a) G(f) > 0 i® f > 1¡ (1¡ ½°)V 0L=(W ¡ 1¡ z) (i.e., i® f is higher than point A).

(1b) G0(f) > 0 for all f > 1¡ (1¡ ½°)V 0L=(W ¡ 1¡ z).

(1c) The payo® to a high-quality ¯rm from taking actions along q = G(f) is decreasing in f .

These properties imply that, if ° · °1, the best deviation for a high-quality ¯rm from a

pooling equilibrium is point A in Figure 6a. In this case, q = s = 0 and there is underpricing as

in the corresponding case in the simple model.

Case 2: W < (1 + z)[1 + (1 ¡ ½°)V 0L=(1 + z ¡ ½°)]. In this case, the best deviations for a
high-quality ¯rm in the region f < ½°=(1 + z) lie on the curve f = SH(q) and, by property (2c)

below, they are strictly dominated by the action at point A in Figure 6b. Thus, it su±ces to

consider only the region f > ½°=(1 + z). The curve q = G(f) for f > ½°=(1 + z) is depicted

by Figure 6b, where the shaded area is the set of deviations that are feasible to a ¯rm (when

perceived as a high-quality ¯rm as a result of deviation) and that generate lower payo®s to a

low-quality ¯rm than in the pooling equilibrium. A lengthy exercise can establish the following

properties, some of which are depicted in Figure 6b:
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(2a) There exists a level fc 2 (½°=(1 + z); 1) such that the curve q = G(f ) is decreasing in f for
f 2 (½°=(1 + z); fc) and increasing in f for f 2 (fc; 1).

(2b) SH(1) = 1=W > ½°=(1 + z) and G(1=W ) < 1. That is, the intersection between the curve

f = SH(q) and q = 1 lies in the region q > G(f) and f > ½°=(1 + z). Since the curve

f = SH(q) starts outside this region when q is small, there is at least one intersection

between f = SH(q) and q = G(f), as depicted by point A in Figure 6b.

(2c) The payo® to a high-quality ¯rm from taking actions along the curve f = SH(q) is increasing

in q.

(2d) The payo® to a high-quality ¯rm from taking actions along the curve q = G(f) (for

f > ½°=(1 + z)) is decreasing in f for all f ¸ (½°=W )1=2.

(2e) There exists °2 > 0 such that, if ° · °2, then the intersection (point A) has f ¸ (½°=W )1=2.

These properties imply that, if ° · °2, the payo® to a high-quality ¯rm from deviating from

the pooling action is maximized at the intersection between the curve f = SH(q) and q = G(f),

such as point A in Figure 6b. There is no underpricing in this case.

When ® is su±ciently small, in both case 1 and case 2 one can also show that the payo®

at point A to a high-quality ¯rm is higher than the payo® in the pooling equilibrium, provided

that the market views such deviation as coming from a high-quality ¯rm. Thus, the action

given by point A is the separating equilibrium that satis¯es the Cho-Kreps criterion. Substitute

W = R0xH=xL + ½D and note that the payo® to a low-quality ¯rm is R0 ¡ 1 in the absence of
pooling (thus V 0L in the above analysis is replaced by R0 ¡ 1). We have,

d = pH =
1

1¡½° [½D +R0xH=xL ¡ 1¡ b=xH ] ,
if R0

xH
xL
+ ½D > (1 + z)

h
1 +

(1¡½°)(R0¡1)
1+z¡½°

i
;

(C.1)

d = 0 if R0
xH
xL

+ ½D < (1 + z)

·
1 +

(1¡ ½°)(R0 ¡ 1)
1 + z ¡ ½°

¸
: (C.2)

To solve for market equilibria, impose symmetry d = D. Doing so for case 1 yields

d = D =
R0xH=xL ¡ 1¡ b=xH

1¡ ½(1 + °) :

Thus, d > 0 only if ½ < 1=(1 + °). Also, (C.1) must be satis¯ed in order to have D > 0, i.e.,

R0
xH
xL

+ ½
R0xH=xL ¡ 1¡ b=xH

1¡ ½(1 + °) > (1 + z)

·
1 +

(1¡ ½°)(R0 ¡ 1)
1 + z ¡ ½°

¸
: (C.3)

Note that z and (1¡ ½°)=(1 + z¡ ½°) are decreasing functions of ½ and so is the right-hand side
of the above inequality. The left-hand side is an increasing function of ½. Since the inequality is
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satis¯ed for ½ = 1=(1 + °) and violated for ½! 0, there exists a critical level ½1 2 (0; 1=(1 + °))
such that the above inequality is satis¯ed if and only if ½ > ½1. Therefore, an underpricing

equilibrium exists if ½1 < ½ < 1=(1 + °) and ° · °1.
For the no-underpricing equilibrium, impose d = D = 0 in case 2. The existence condition

becomes

R0
xH
xL

< (1 + z)

·
1 +

(1¡ ½°)(R0 ¡ 1)
1 + z ¡ ½°

¸
. (C.4)

The right-hand side of this inequality is a decreasing function of ½. The inequality is satis¯ed

when ½! 0 and violated when ½! 1=°. Thus, there exists ½2 2 (0; 1=°) such that the inequality
is satis¯ed for 0 < ½ < ½2. If ° · °2, in addition, the no-underpricing equilibrium exists.

Comparing (C.3) and (C.4) immediately shows ½1 < ½2. Therefore, the underpricing equi-

librium and the no-underpricing equilibrium coexist if ½ 2 (½1; ½2) and ° · minf°1; °2g. This
completes the proof of Proposition 5.1. QED

D. Proof of Proposition 5.2

We have already argued in the text that ¯rm 2 underprices only if ¯rm 1 underprices su±ciently

(i.e., if d1 ¸ D0). Analogous to the derivation of (C.1) in Appendix C, we have:

d1 =
1

1¡ ®½2 (W ¡ 1¡ b=xH), (D.1)

if W > (1 + ®½2bx¡1H + (1¡ ®½2)bx¡1L )
"
1 +

(1¡ ®½2)(R0 ¡ 1)
1 + ®½2bx¡1H + (1¡ ®½2)bx¡1L ¡ ®½2

#
; (D.2)

where W = (1 + ½®)R0xH=xL ¡ ½®(1 + bx¡1H ). The underpricing equilibrium has q = G(f) = 0.

With V 0L being set to R0 ¡ 1, G(f) = 0 implies:

f = 1¡ (1¡ ®½2)(R0 ¡ 1)
W ¡

h
1 + ®½2bx¡1H + (1¡ ®½2)bx¡1L

i : (D.3)

For ¯rm 1 to underprice, d2 must also be positive and so we need d1 ¸ D0, i.e.

W ¡ 1¡ b=xH ¸
1¡ ®½2
½

·
b

xL
¡R0

µ
xH
xL

¡ 1
¶¸
: (D.4)

Note that W is an increasing function of ½ and the right-hand side of (D.2) is a decreasing of

½. Moreover, (D.2) is satis¯ed when ½ ! ®¡1=2 and is violated when ½ ! 0. Then, there exists

½a 2 (0; ®¡1=2) such that (D.2) is satis¯ed if and only if ½ 2 (½a; ®¡1=2). Similarly, there exists
½b 2 (0; ®¡1=2) such that (D.4) is satis¯ed if and only if ½ 2 [½b; ®¡1=2). Let ½3 = maxf½a; ½bg.
Then both (D.2) and (D.4) are satis¯ed if and only if ½ 2 (½3; 1=®2).
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In addition to the requirement ½ 2 (½3; ®¡1=2), the payo® to ¯rm 1 (when it is high-quality)

must be higher with d1 > 0 than with d1 = 0 in order for the ¯rm to underprice. With d1 = 0,

the payo® to high-quality ¯rm 1 is

(1¡ f¤)
h
R0

xH
xL
¡
³
1 + b

xH

´
(1¡ q¤)

i
= R0

xH
xL
¡
³
1 + b

xH

´
(1¡ q¤)¡ q¤

= (R0 ¡ 1) [R0xH=xL ¡ (1 + b=xH)(1¡ q¤)] /[R0xH=xL ¡ (1 + b=xL)(1¡ q¤)]

where the inequalities come from substituting the de¯nitions of (f¤; q¤) in (3.14). When d1 > 0

is given by (D.1), q = 0 and f is given by (D.3). The total return to shareholders is (W ¡ 1 ¡
bx¡1H )=(1¡ ®½2) and the payo® to high-quality ¯rm 1 from underpricing is

(R0 ¡ 1)(W ¡ 1¡ bx¡1H )
W ¡

h
1 + ®½2bx¡1H + (1¡ ®½2)bx¡1L

i :

Substituting W and simplifying, the payo® to the ¯rm is higher with underpricing than without

if and only if
1¡ ®½2
1 + ®½

>
(1¡ q¤)(R0xH=xL ¡ 1¡ b=xH)
R0xH=xL ¡ (1 + b=xH)(1¡ q¤)

:

There exists ½4 2 (0; ®¡1=2) such that the above condition is satis¯ed if and only if 0 · ½ < ½4.
The level ½4 is not necessarily greater than ½3. Only when ½4 > ½3 and ½ 2 (½3; ½4) does high-
quality ¯rm 1 underprice IPO. QED
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   L

V( f ,q;R ,xL )

H =V( f ,q 1 ;R 1 ,xL )

(q 1 ,R 1)

V( f ,q;R ,xH )

=V( f ,q 1 ;R 1 ,xH )

L H

  0    q

Figure 1a Firms' relative incentive to change q for ¯xed f
in response to an increase in R

 R       H
    V(f,q;R,xH) L

=V(f1,q;R1,xH)

   V(f,q;R,xL)

=V(f1,q;R1,xL)

  (f1,R1)

                 L

H

  0    f

Figure 1b Firms' relative incentive to change f for ¯xed q
in response to an increase in R
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         f

       1

  f= INDL(q)

 f=S α(q)

       A:
(qb,fb) (q0,f0)   f=SH(q)

 Q 1    0 1     q

Figure 2a Deviations by a high-quality ¯rm: Q1 < 0

   f
   1

(q 0,f0)

f=Sα(q)

            A    f=SH (q)

      

   f= IND L(q)

  0 Q 1   Q A 1       q

Figure 2b Deviations by a high-quality ¯rm: Q1 > 0
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          q*
   f*

         f*

             q*

   0 R 0(xH/xL - 1) b/xL RH - R0

Figure 3 Dependence of (f; q) on the earnings di®erence between

a high-quality and a low-quality ¯rm in the separating equilibrium
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Figure 4 Market equilibria
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   1

f= IND L(q)

     B    f=S H(q)

           A
    f=LB(q)

   0         Q 1                Q b 1   q

Figure 5 A separating equilibrium when there is a lower
bound on the amount of equity ¯nancing
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              1

        q=G( f )  ( fo r  f>ρ γ / (1+z) )

f = S H (q )

A

f=ρ γ / (1+z)

q=G( f )  ( fo r  f<ρ γ / (1+z) )

          0  1    q

Figure 6a When a high-quality ¯rm has its own in°uence

on publicity: Case 1 (large W )
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    1

  q=G(f )  ( for  f>ργ / (1+z))

  fc  1 /W

  f =SH (q)

           A

f=ργ / (1+z)

   0  1    q

Figure 6b When a high-quality ¯rm has its own in°uence

on publicity: Case 2 (small W )
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